Abstract:China is the largest agricultural country with the largest population and booming socio-economy, and hence, remarkably increasing water demand. In this sense, it is practically critical to obtain knowledge about spatiotemporal variations of the territorial water storage (TWS) and relevant driving factors. In this study, we attempted to investigate TWS changes in both space and time using the monthly GRACE (Gravity Recovery and Climate Experiment) data during 2003–2015. Impacts of four climate indices on TWS were explored, and these four climate indices are, respectively, El Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), and Pacific decadal oscillation (PDO). In addition, we also considered the impacts of precipitation changes on TWS. We found significant correlations between climatic variations and TWS changes across China. Meanwhile, the impacts of climate indices on TWS changes were shifting from one region to another across China with different time lags ranging from 0 to 12 months. ENSO, IOD and PDO exerted significant impacts on TWS over 80% of the regions across China, while NAO affected TWS changes over around 40% of the regions across China. Moreover, we also detected significant relations between TWS and precipitation changes within 9 out of the 10 largest river basins across China. These results highlight the management of TWS across China in a changing environment and also provide a theoretical ground for TWS management in other regions of the globe.
Downloading PDF