Abstract: Teleconnections between El Niño/Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian Ocean Dipole (IOD) and Pacific Decadal Oscillation (PDO) and seasonal precipitation regimes over the Yangtze River basin have been analysed based on the rotated empirical orthogonal functions. Results show that ENSO is the leading driver of seasonal precipitation variability over the Yangtze River basin, and the spring precipitation has been influenced by the PDO and ENSO, the summer and autumn precipitation has been influenced by the ENSO and IOD, the winter precipitation has been influenced by the ENSO, IOD and NAO. Furthermore, changes for the seasonal occurrence and intensity of wet days linked to the ENSO, NAO, IOD and PDO indices have also been investigated to discover which is the dominant mechanism driving seasonal precipitation changes. And results indicated that the influences of ENSO, NAO, IOD and PDO on the seasonal occurrence and intensity of precipitation events are complex, such as that the negative PDO event at the same year tends to increase the spring occurrence of precipitation events in the southwestern part of the Yangtze River basin while the positive ENSO event a year earlier tends to increase the spring intensity of precipitation events in the east part of the Yangtze River basin.
Downloading PDF