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A B S T R A C T

Employing a multi-model framework, we estimate the impacts of contrasting warming levels and uneven re-
gional socio-economic development on area, population and gross domestic product (GDP) exposures to flood
magnitude and variability in global Flood-Affected Regions (FARs). These exposures to flood variability show
persistent increases in FARs, but to flood magnitude only in East and South Asia. Globally, the increases in these
exposures are not projected in moderate but extreme floods. Specifically, the areal exposure would be decreased
(increased) by 1.8%/°C (1.9%/°C) for moderate (extreme) floods; the reduced population exposure to extreme
floods can be three times higher than that to moderate floods when limiting 2 °C to 1.5 °C warming. Rapid
regional economic growth of East and South Asia (whose GDP accounts for 9.8% of FARs in year 2000 to 18.5%
in year 2025) would shift global GDP exposure from a decrease of 2.5%/°C to an increase of 1.7%/°C.

1. Introduction

Considering adverse impacts of anthropogenic warming on the so-
ciety and ecosystems, the 2015 Paris Agreement sets a global target of
keeping the warming level below 2 °C above preindustrial levels and
pursuing to limit the temperature increase to 1.5 °C (FCCC/CP/2015)

). Since then, potential impacts of the 1.5 °C warming, relative to the
2 °C warming target, on natural and man-made systems have been
widely evaluated at regional and global scales (King et al., 2017;
Chevuturi et al., 2018; Liu et al., 2018a,b; Park et al., 2018; Gu et al.,
2019a,b). The IPCC (Intergovernmental Panel on Climate Change)
special report summarized that limiting global warming to 1.5 °C,
compared to the 2 °C target, can substantially reduce increases in heavy
precipitation and hence mitigate the intensification of floods (Lin et al.,
2018; Liu et al., 2018a,b; Park et al., 2018). Therefore, the fraction of

global land area affected by floods is projected to be smaller in the
1.5 °C warming with medium confidence (IPCC, 2018). However, flood
risks are not necessarily proportional to the alleviation of flood hazards
in the 1.5 °C warming world, because flood risks also depend on ex-
posure and vulnerability (Cardona, 2012; Lavell, 2012).

The response of flood properties to anthropogenic warming is
twofold: changed mean state and variability (Kiem et al., 2003; Delgado
et al., 2010; Asadieh and Krakauer, 2017). Although global flood risk
assessments have projected changes in flood intensity and evaluated
relevant population and gross domestic product (GDP) exposures
(Jongman et al., 2012; Winsemius et al., 2016; Willner et al., 2018), few
studies have focused on flood risks in terms of changed flood variability
(Kiem et al., 2003; Delgado et al., 2010). Over recent years, a number of
studies have estimated human and economic losses under warming
scenarios (Alfieri et al., 2017; Dottori et al., 2018); however, these
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studies have included no direct quantification of reduced impacts of
floods under Paris’s 0.5 °C less warming target, or there was no con-
sideration of uneven regional socio-economic development in the eva-
luation of global flood exposure (Winsemius et al., 2016; Alfieri et al.,
2017; Dottori et al., 2018; Willner et al., 2018; Lai et al., 2020).

Here, we evaluate how flood magnitude and variability may change
under the 1.5 °C and 2 °C warming scenarios. Further, we make as-
sessments of future changes in the exposure of land area, population,
and GDP to different flood magnitudes and variabilities under time-
varying socio-economic scenarios, which enable us to understand how
the uneven regional socio-economic development can affect global
flood exposure to warming climate. To that end, we couple anthro-
pogenic warming with socio-economic scenarios to quantify the socio-
economic impacts because of large magnitude or high variability of
floods with different return periods under the 1.5 °C warming relative
to the 2 °C warming.

2. Data and methods

2.1. Identification of the major flood affected regions

Dilley et al. (2005) drew four global flood risk maps, i.e. flood ha-
zard frequency, flood mortality risk, flood proportional economic loss
and flood total economic loss risk (Fig. 1). In the four maps, flood risk is
divided into ten risk deciles from 1th decile (low risk) to 10th decile
(high risk). The regions where the risk decile is larger than 1th decile
are defined as the major Flood Affected Regions (FARs, Fig. 1). FARs
account for only 20% of the global land, but have far greater extreme
precipitation than that over most of the remainder of global land,
sustain 67% of the global population, and produce 54% of the global
gross domestic product (GDP) (Fig. S1 in the Supplementary
Information). Mitigations or aggravations of flood hazards in FARs,
compared to those in non-FARs with lower socio-economic develop-
ments, can result in more substantial impacts on flood risks when
global-scale benefits and effects of the 1.5 °C world are assessed.

2.2. Flood simulations

We use daily natural river flow simulations from eight global hy-
drology and land surface models (GHMs) driven by five Coupled Model
Intercomparison Project Phase 5 (CMIP5) global climate models
(GCMs) from the Inter-Sectoral Impact Model Intercomparison Project

(ISIMIP) (Warszawski et al., 2014) (Tables S1 and S2 in the
Supplementary Information; Li et al., 2016a,b; Liang et al., 1994;
Vörösmarty et al., 1998; Hagemann and Gates, 2003; Tang et al., 2006;
Hanasaki et al., 2008; Bierkens and van Beek, 2009; Gosling and Arnell,
2011; Pokhrel et al., 2012; Giuntoli et al., 2018). The detail information
for the five GCMs and their space–time resolutions are shown in Table
S1 in the Supplementary Information. The ability of GCMs to reproduce
extreme precipitation events is crucial to accurately simulate floods. A
number of studies have evaluated the performances of CMIP5 GCMs
(such as inter-annual variability, bias, and trend in extreme precipita-
tion) based on historical observations at global and regional scales
(Kharin et al., 2013; Sillmann et al., 2013; Yin et al., 2013; Mehran
et al., 2014; Kim et al., 2019). In ISIMIP, the GCM outputs have been
bias-corrected into a uniform 0.5° × 0.5° spatial resolution by a sta-
tistical method, which can adjust probability distributions and reduce
departures from observations (Hempel et al., 2013). This bias correc-
tion ensures that the long-term statistics of the GCM outputs are con-
sistent with the records from the Water and Global Change (WATCH)
during 1960–1999 (Weedon et al., 2011; Warszawski et al., 2014), and
substantially improves the reproduction of extreme precipitation
(Cannon et al., 2015). It is done for precipitation data from GCMs under
historical and RCP scenarios. The non-stationary characteristics of ex-
treme precipitation for different warming scenarios have been widely
assessed and investigated at regional and global scales in previous
studies (van Haren et al., 2013; Li et al., 2016a,b, 2018a,b; Sarhadi
et al., 2018). van Haren et al. (2013) evaluated the modeled changes in
extreme precipitation in Europe and found that GCMs fail to reproduce
the observed trend in large parts of Europe. However, from a global
perspective, the CMIP5 GCMs have an accepted ability to reproduce the
climatological mean state of annual precipitation and its seasonality (Li
et al., 2016a,b). Additionally, some studies directly employed the pro-
jected precipitation from GCMs to conduct non-stationary extreme
value analysis (Sarhadi et al., 2018; Li et al., 2018a,b). Li et al.
(2018a,b) indicated that the 100-year extreme precipitation event in
current period would be the 63-year in the period around 2035 based
on the future precipitation data from GCMs. Sarhadi et al. (2018)
conducted a joint probability analysis of the severe warm and dry
conditions to evaluate the multidimensional risk in a nonstationary
climate. These warming signals in the projected extreme precipitation
are reserved after the trend-preserving bias correction used in the
ISIMIP (Hempel et al., 2013).

The ISIMIP aims to quantitatively assess the impacts of global

Fig. 1. Global distributions of (a) flood hazard frequency of 1985–2003; (b) flood mortality risk of 1981–2000; (c) flood proportional economic loss of 1981–2000;
and (d) flood total economic loss risk of 1981–2000. The areas enclosed by black boundaries are the major flood-affected regions (FARs). High (low) deciles indicate
high (low) risk and loss. The four maps are obtained from Socioeconomic Data and Applications Center (SEDAC) at https://sedac.ciesin.columbia.edu, and more
details can be found in Dilley et al. (2005).
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climate change on water availability, river flooding, coastal flooding,
agriculture, ecosystems, and energy demands, evaluate the basic un-
certainty of these assessments, and promote the model improvement
and intercomparison (Warszawski et al., 2014). Therefore, ISIMIP
presents the potential impacts of climate change on river flooding and
doesn’t provide specific guidance on adaptation to climate change in an
individual river basin (Dankers et al., 2014). Additionally, the effects of
human regulations on river flooding are not considered in the GHMs,
such as land use changes, flow control structures, flood defenses
(Hirabayashi et al., 2013). These human activities may play a crucial
role in flood simulations in a specific river basin; hence, the ISIMIP may
overestimate the flood risk in some regions. Nevertheless, the projec-
tions from ISIMIP give us a reference on how the global flood risk would
change and what is the uncertainty of the changing flood risk only from
a perspective of climate change. It is still worth conducting this work
from a risk management perspective: if the change directions of flood
risk are consistent in most models and scenarios, the regions with
projected high flood risk should be paid more attentions and adaptation
plans in these regions should be prepared beforehand (Warszawski
et al., 2014).

2.3. Model validation against observations

Forty simulations (i.e., 5 GCMs × 8 GHMs) of daily discharge of
1971–2005 under historical scenario and of 2006–2100 under re-
presentative concentration pathway 8.5 (RCP8.5) were obtained from
ISIMIP2a (Warszawski et al., 2014). Comparing with the original ver-
sion of ISIMIP (i.s. Fast Track), ISIMIP2a is explicitly designed to
evaluate the model’s ability to reproduce observed historical varia-
bility, responses to extreme climatic events such as floods, heavy rains
and storms. The bias correction method is also improved to better
preserves variability and extreme events, and to apply this method to
the RCP climate projections.

RCP8.5 is a high-emission scenario, dominated by the large increase
in greenhouse gas concentrations. Because of this dominance, changes
in floods reflect the primary role of greenhouse gases and can be
thought of as the response of the floods to anthropogenic greenhouse
gas emissions. To enhance the signal detection of anthropogenic
warming effect in floods, we only choose the flood projections under
RCP8.5. The peak discharge simulated by the eight GHMs has been
widely evaluated by in-situ observations on major big rivers across the
globe (Hirabayashi et al., 2013; Li et al., 2018a,b; Zhao et al., 2017;
Dottori et al., 2018; Willner et al., 2018). Hirabayashi et al. (2013)
selected 32 large basins worldwide to compare the flood simulations by
MATSIRO hydrological model (one of the eight GHMs) with observa-
tions, and indicated that the performance of mean annual maximum
daily discharge was acceptable with bias< 50% in 17 basins. Li et al.
(2016a,b) validated the discharge with observations in ten major Chi-
nese rivers and reported that ISIMIP simulations had acceptable skill in
modelling floods.

We also compared the annual maximum daily discharge from
ISIMIP with observations from Global Runoff Data Centre (GRDC) in
nine large rivers across the FARs during 1971–2005. The nine large
rivers are chosen due to that they are scattered across the FARs and due
to their high quality of observations. Additionally, ISIMIP provides a
framework to assess the impacts of climate changes at a global scale;
thus it is a huge challenge for ISIMIP models to accurately simulate the
floods in small catchments. Although large uncertainties and systematic
biases are observed in individual simulations of these 40 GCM/GHM
combinations, the median of these simulations shows acceptable per-
formance (the coefficient of determination in all nine rivers is larger
than 0.66), especially in the Amazon, Orinoco, Mekong, Yangtze, and
Pearl basins (Fig. 2). It is difficult to comprehensively evaluate the
ability of GHMs in ISIMIP to reproduce observed flood characteristics
and trends due to the lack of observations in many rivers and the in-
fluences of human activities (such as water extraction, reservoir

operation, land use/land cover change). However, these GHMs can still
be considered as the state-of-the-art models (Dankers, et al., 2014).

2.4. Definitions of the present day, 1.5 °C, and 2 °C warmer worlds

Global mean surface temperature (GMST) during 1861–2100 is an
output of the five GCMs under historical and RCP8.5 scenarios. The
reference period 1861–1900 is used to calculate pre-industrial GMST.
The estimated increase in GMST averaged over a 30-year period cen-
tered on a particular year is defined as the warming level (Fig. S2). The
present day is defined from 1971 to 2000 with 0.7 °C warming referring
to the pre-industrial level. The 1.5 °C (2 °C) warming time is defined as
the central year in a 30-year period during which the averaged GMST is
closest to 1.5 °C (2 °C). It is worth noting that the 30-year period
identified as the 1.5 °C (2 °C) warming time varies by GCMs (see
straight dashed lines in Fig. S2 in the Supplementary Information).

2.5. Calculation of return period and variability of floods

For each grid, we first employ the annual maximum method to
sampling the annual maximum daily discharge during 1971–2100 si-
mulated under the historical scenario and the RCP8.5. Then, for each
grid in the FARs, a time series of flood peaks over 1971–2100 is es-
tablished. Over a 30-year period during the 1971–2100 (that is, this
time series of flood peaks over 1971–2100 can be divided into 30-year
segments, such as 1971–2000, 1972–2001, …, 2071–2100), the sta-
tionary generalized extreme value (GEV) distribution (Coles, 2001) is
employed to fit the annual maximum daily discharge and estimate the
return values (RV) (i.e. 10-, 20- and 50-year floods; n-year floods in-
dicate floods on average occur once during n years) in each land grid for
each experiment under present day and different warming levels.
Dankers et al. (2014) have tested the performance of GEV fitness to
ISIMIP flood simulations through a likelihood ratio method. These n-
year floods are taken as the flood magnitude. We use the standard
deviation of annual maximum daily discharge over a 30-year period to
define the variability of floods. Before calculating the variability of
floods, a local detrending with loess fitting function (setting
span = 0.5) is conducted for each land grid (Zhang et al., 2018). The
two characteristics, i.e. flood magnitude and variability, are used to
describe the selected flood events.

2.6. Areal, population, and GDP exposures to floods

The estimated 10-, 20-, and 50-year floods during the present day
(i.e. 1971–2000) are taken as thresholds of flood magnitude
(Hirabayashi et al., 2013; Dankers et al., 2014; Zhang et al., 2014).
Similarly, the standard deviation (σ) of annual maximum daily dis-
charge over the present day is calculated, and 1.25σ , 1.5σ , and 1.75σ
are taken as thresholds of flood variability. Over a 30-year period
presenting a specific warming level, a land grid is exposed to the flood
magnitude, if the annual maximum daily discharge in the land grid
exceeds the estimated (i.e. 10-, 20- and 50-year) floods in the present
day. Likewise, if the standard deviation of annual maximum daily dis-
charge in a land grid exceeds the estimated thresholds (i.e. 1.25σ , 1.5σ ,
and 1.75σ) in the present day, the land grid is taken to be exposed to
flood variability. The area, population, and GDP in all land grids ex-
posed to flood magnitude (variability) are summarized with respect to
the total area, population, and GDP, respectively, over the whole FARs.
Population and GDP exposures are estimated not only based on their
values fixed in 2000 but also the projected values considering possible
future socioeconomic development scenarios. The framework of cal-
culating the areal, population, and GDP exposures to flood magnitude/
variability is shown in Fig. 3.

The reduced impacts by the 0.5 °C less warming are derived as the
ratio of the exposure difference between 1.5 °C and 2 °C warming levels
to the exposure in the 1.5 °C warming level. We integrate the ISIMIP
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modeling framework with a number of downscaled socio-economic
scenarios from the Shared Socio-economic Pathways (SSP) (O’Neill
et al., 2012) to directly quantify the area, population, and GDP exposed
to riverine flood in different warming levels, particularly the exposed
differences in 1.5 °C and 2 °C warming. It is worth noting that the
mappings between RCP8.5 and SSP3, SSP4, and SSP5 are suitable

combinations considering the projected atmospheric composition, ra-
diative forcing and climate characteristics (van Vuuren and Carter,
2014). The Global 15 × 15 Minute Grids of the downscaled GDP based
on the Special Report on Emissions Scenarios (SRES) B2 Scenario are
geospatial distributions of Gross Domestic Product per unit area (GDP
densities) (Gaffin et al., 2004). This projection of gridded GDP is only to

Fig. 2. Quantile-quantile plots of observed and simulated annual maximum daily discharge in nine major rivers across the FARs. The black line denotes the 1:1 line.
In the legend, G, H, I, M, and N indicate GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M, respectively. R2 indicates the coefficient
of determination.
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the year 2025. Nevertheless, this projected GDP data have the ability to
capture the future global patterns of GDP development, such as the
increasing proportion of GDP in East Asia and South Asia to global GDP.

3. Results

As an indicator of floods, the annual maximum daily discharge
during 1971–2100 simulated under the historical scenario and the
RCP8.5 over the FARs are decomposed by the Rotated Empirical
Orthogonal Function (REOF) (Marvel et al., 2019). The anthropogenic
warming signal is defined as the spatial mode of the leading mode, and
is detected out if the temporal mode of the leading mode increases as
the increasing temperature (Marvel et al., 2019). Thus, the anthro-
pogenic warming signal is detected by the multi-model ensemble
median of floods and in 36 out of 40 model combinations (Fig. 4 and
Fig. S3), corroborating the impacts of anthropogenic warming on flood
behavior. Moreover, we found different flood responses to

anthropogenic warming across the FARs due to the spatial hetero-
geneity of magnitudes and directions of changes of floods.

Fig. 5 shows the areal average change rate (%) of floods per degree
Celsius increase over the whole and individual FARs. Overall, floods
response to anthropogenic warming over the FARs is almost zero
(0.4%/°C, 25th-75th percentile range [−1.1, +1.3]%/°C); however,
pronounced positive responses are detected in East Asia (5.9%/°C,
[+3.8, +8.6]%/°C) and South Asia (7.9%/°C, [+4.9, +10.1]%/°C),
and these two regions are with high population exposure and high
vulnerability (Winsemius et al., 2016; Willner et al., 2018). Decreased
snow accumulation in warmer winter (Dankers et al., 2014) triggers
negative flood responses to warming climate in Europe with a response
rate of −4.9%/°C ([−7.7, −2.7]%/°C). As the discussion from Dankers
et al. (2014), the areas where the 30-year floods showed decreases are
mainly concentrated in the areas where the hydrograph is dominated
by snowmelt in spring. The signal-to-noise (SNR) ratios of the change
rates in South Asia, East Asia, and Europe are > 1. Meanwhile, the SNR

Fig. 3. The framework for calculating the areal, population, and GDP exposures to flood magnitude/variability.
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ratios of< 1 in other regions imply substantial uncertainties in the si-
mulated flood changes with the ISIMIP (Hirabayashi et al., 2013;
Dottori et al., 2018; Willner et al., 2018) and the model uncertainties
were evaluated in our validation against observations in nine major
rivers across the FARs (see Fig. 2). It should be noted that the positive
response rates in East Asia and South Asia may overestimate in the real
world due to that our GHMs doesn’t consider the no-climate factors
(dominated by human regulations).

We observed consistently increasing flood magnitude (the mean
magnitude of floods over a 30-year period, that is, flood magnitude is
calculated by the average of annual maximum daily discharge over the
30-year periods representing the present day, 1.5 °C and 2 °C warming
levels) in the 1.5 °C and 2 °C worlds relative to the present day (i.e.
1971–2000) across 64% of the FARs and specifically in North America
and South Asia (Milly et al., 2002; Hirabayashi et al., 2013; Paltan
et al., 2018) (Fig. 6). Besides, a majority of model ensemble simulations
agreed with decreased flood magnitudes in Europe. In the 2 °C warming
world, relative to the 1.5 °C warming, flood magnitudes are expected to
be larger in East Asia, South Asia and Africa, but smaller in Central and
West Asia, Europe, and North America. Hirabayashi et al. (2013) em-
ployed a state-of-the-art global river routing model with an inundation
scheme to compute river discharge from the simulations of 11 GCMs
under RCP8.5, and projected large increase in flood frequency in
Southeast Asia. Dankers et al. (2014) assessed the relative changes in
the 30-year floods in the 2070–2099 under RCP8.5 compared with

1971–2010 under historical scenario, and they found a consistent in-
crease in parts of Southeast Asia, including India and a general decrease
in northern and eastern Europe, and parts of northwestern North
America. This spatial pattern of projected flood change is in line with
the projecting changes in 100-year floods from 21GCMs shown in Best
(2018). Flood variabilities (the standard deviation of floods over a 30-
year period) in 71.1/73.8% of the FARs are expected to increase in the
1.5/2 °C warming relative to the present day with high model agree-
ments, especially in North America, Africa, South Asia, and Northeast
Asia (Fig. 6). Half of the FARs is projected to be associated with in-
creasing flood variabilities in the 2 °C warming world compared to the
1.5 °C warming.

We further evaluated impacts of flood magnitude, i.e. the 10-, 20-,
and 50-year floods, by GEV distribution in the present day (see Fig. S4
for spatial distributions of the 10-, 20-, and 50-year floods estimated in
1971–2000) on exposures of area, population, and GDP to floods. As the
global mean surface temperature increases by 1–3 °C, the diametric
change in the direction of areal and population exposures between
moderate (i.e. 10- and 20-year floods) and extreme (i.e. 50-year flood)
floods are identified across the entire FARs (Fig. 7a). Specifically, the
areal exposure to the 20-year flood decreases by 1.8%/°C, while the
land area exposed to the 50-year flood increases by 1.9%/°C (Fig. 7a). If
the areal exposure in the 50-year flood is combined with population
fixed at year 2000, the exposed fraction grows faster (4.8%/°C), which
is also the case for the projected population under all the three SSPs

Fig. 4. The leading mode of Rotated Empirical Orthogonal Function (REOF) for multimodel ensemble median (MME) of annual maximum daily (RX1day) discharge
during the period of 1971–2100 under historical (1971–2005) and RCP8.5 (2006–2100) scenarios: a. the spatial mode of the leading mode (EOF1), and b. The
temporal mode of the leading mode (PC1) which is smoothed by the 11-year running mean to reduce the inter-annual variability.
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Fig. 5. Response of floods to anthropogenic warming under RCP8.5. The box-plot in each sub-figure indicates the areal average change rate (%) of floods per degree
increase over the whole and individual FARs. The black dot in the box-plot indicates the multimodel ensemble median. The histogram on the right of each sub-figure
indicates the signal-to-noise (SNR) ratio of the change rate. The floods and global mean near-surface air temperature are averaged over decadal periods starting from
2006 and overlapped by five years (i.e. 2006–2015, 2011–2020, …, 2091–2100), and then a linear regression between floods and temperature is developed as the
change rate of each combination. The SNR is defined as the ratio of the multimodel median change rate to intermodal standard deviation, and SNR greater than 1
indicates the change rate is reliable compared to the model uncertainty.

Fig. 6. Changes in flood magnitude and variability at different warming levels in FARs. Present day indicates the period of 1971–2000, and 1.5 °C (2 °C) warming
indicates a 30-year period under RCP8.5 with temperature higher than 1.5 °C (2 °C) relative to pre-industrial levels (i.e. 1861–1900). Shading lines denote
where greater than 60% of the model combinations agree on the sign of change.
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Fig. 7. Areal and GDP exposures to 10-, 20-, and 50-year flood magnitudes at different warming levels over the globe (a–c), and areal, population and GDP exposures
reduced in the 1.5 °C warming relative to the 2 °C warming over the globe, East Asia and South Asia (d–f). In a–c, the solid lines and corresponding shades indicate the
multimodel ensemble medians and 25–75% ranges. In d–f, the circles and lines denote multimodel medians and 25–75% ranges, respectively. Solid (open) circles
denote the signs of medians are (not) agreed by more than 60% of model combinations.

Table 1
Changes in areal, population, and GDP exposures to 10-, 20-, and 50-year flood magnitudes per warming 1°C. The percentages in grey columns indicate the ratios of
area, population, and GDP between East Asia/South Asia and the whole FARs, respectively.

Scenarios The whole FARs (%/°C) East Asia (%/°C) South Asia (%/°C)

10-yr 20-yr 50-yr Percentages (%) 10-yr 20-yr 50-yr Percentages (%) 10-yr 20-yr 50-yr

Area −1.0 −1.8 1.9 9.9 2.3 6.1 8.3 12.5 1.2 3.9 7.6
POP2000 −0.2 0.8 4.8 25.8 1.7 5.4 8.1 31.1 0.8 4.1 9.6
SSP3 −1.2 0.6 4.4 10.1 1.5 5.9 7.8 36.7 0.1 3.5 9.8
SSP4 −1.6 −0.3 2.8 7.9 1.3 6.3 8.4 26.8 −0.3 2.6 9.8
SSP5 −1.7 −0.5 3.2 11.6 1.2 6.3 8.3 28.7 0.0 3.4 9.7
GDP2000 −3.9 −3.5 −2.5 6.2 1.6 6.6 7.8 3.6 2.2 2.0 7.3
GDP2025 −3.2 −1.8 1.7 18.5 1.2 11.4 17.9 5.9 2.4 3.9 8.9

Note: the bold numbers are used to illustrate our results shown in the main text.
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(Table 1). Winsemius et al. (2015) pointed out that flood-induced da-
mage may increase by up to a factor of 20 by the end of 21st century
without any adaptations.

East and South Asia are the only two regions with increased ex-
posure of land area, population and GDP to both moderate and extreme
floods, especially to the 50-year floods (Fig. S5). The increasing rates of
future exposures in East and South Asia depend on the projected
amounts of population and GDP in these two regions, which also largely
affect the response behavior of global flood exposure under warming.
As the ratio of projected population between East and South Asia and
the whole FARs increases from 34.5% in SSP3 to 46.8% in SSP4, the
changing rate in FARs’ population exposed to the 50-year floods in-
creases from 2.8%/°C to 4.4/°C (Table 1). Jongman et al. (2012)
showed systematically larger growth in the population living within
flood hazard zones compared to total population growth in the future.
The GDP of East and South Asia accounts for 9.8% of that in FARs in
year 2000, and the percentage is projected to be 18.5% in year 2025.
Correspondingly, the GDP exposed to 50-year floods is increased from
7.3%/°C to 8.9%/°C in South Asia, from 7.8%/°C to 17.8%/°C in East
Asia, and shifts from a decrease of −2.5%/°C to an increase of 1.7%/°C
for the entire FARs (Fig. 7b and c). Hallegatte et al. (2013) projected
that the flood-induced losses may increase from US$ 6 billion/year in
2005 to be US$52 billion/year in 2050 in the l36 largest coastal cities.
Willner et al. (2018) indicated that the total economic losses caused by
river flooding will increase by 17% in 2016–2035 and the increase is
strongest in China if large-scale structural adaptation is not adopted.
Human activities and adaptation investments can largely reduce these
population and GDP losses. Ward et al. (2017) evaluated the benefits of
structural flood protection measures in urban areas around the world,
and pointed out that flood defense investments could reduce future
flood losses below today’s level. If flood protection standards are con-
sidered in flood simulations, the projected population and GDP ex-
posures will greatly decline in both high- and low- income countries
(Winsemius et al., 2016; Jongman et al., 2015).

We also evaluated differences in exposures to floods between 1.5 °C
and 2 °C warmings to estimate the impacts of the 0.5 °C less warming.
When the warming is reduced by 0.5 °C, the FARs are projected to
benefit from robust and substantial decreases in areal and population
exposures to extreme floods (Fig. 7d–f). Over the FARs, the reduced
area and population in year 2000 exposed to the 50-year floods are
projected to be 2.9% ([+0.3, +7.0]%) and 8.0% ([+4.1, +13.8]%)
respectively, which are much higher than those for the 20-year floods
(i.e. −0.5% [−1.2, +0.5]%, and 2.8% [+0.7, +5.9]%), and those for
the 10-year floods (i.e. 1.1% [−1.6, +3.0]%, and 0.4% [−0.3,
+1.6]%). The alleviation of flood risks to extreme floods by limiting
warming to the 1.5 °C is particularly evident in East and South Asia. The
reduced areal, population, and GDP exposures to the 50-year floods
(around 15%) are about threefold higher than that to the 20-year floods
(around 5%) in East Asia (Fig. 7e), and about double higher than that in
South Asia (Fig. 7f). The percentages of impacts in population ex-
posures are comparable among these SSPs. Paltan et al. (2018) in-
dicated that the 100-year floods would decrease to be 25-year floods in
a 1.5 °C world. Hirabayashi et al. (2013) revealed that the global ex-
posure to floods is highly related to the warming levels. Dottori et al.
(2018) indicated that the flood-induced losses would rise by 70–83% in
a 1.5 °C warming level and the death toll would be 50% higher in a 2 °C
warming level.

Floods that deviate substantially from the climatological mean may
exceed the tolerable limits of ecological and human systems of a region.
Thus increases in flood variability can cause considerable threats and
losses to the local society and ecosystems (Poff et al., 2007; Munoz and
Dee, 2017). The spatial heterogeneities of area, population, and GDP
exposures to flood magnitude are not observed in those exposed to
flood variability (Fig. 8). The land area, population and GDP exposed to
flood variability increase consistently among all three thresholds (i.e.
the 1.25, 1.5, and 1.75 standard deviation σ in the present day) and all

individual FARs, although the estimated exposures vary by these
thresholds and by regions. For the FARs as a whole, the area exposed to
flood variability exceeding the 1.25σ is projected to be 29.7% ([+23.1,
+36.9]%) and 34.2% ([+23.5, +39.2]%) under the 1.5 °C and 2 °C
warming levels, respectively. The percentages for flood variability ex-
ceeding the 1.75σ are 7.2% ([+5.2, +10.3]%) and 9.4% ([+5.7,
+12.5]%). It is worth noting that the area and population exposed to
flood variability increase fastest in South Asia (the areal exposure, for
example, increases by 17.3%/°C, 12.9%/°C, and 8.9%/°C for the 1.25σ ,
1.5σ , and 1.75σ , respectively), followed by East Asia (11.9%/°C, 8.3%/
°C, and 4.4%/°C) (Table 2). The GDP growth in East and South Asia (for
example in East Asia, the GDP exposed to flood variability greater than
1.25σ increases from 12.7%/°C in year 2000 to 20.1%/°C in year 2025)
accelerates the response rate of GDP exposure in the whole FARs to
warming (i.e. from 1.6%/°C to 7.2%/°C) (Table 2).

Similarly, we also quantify the differences in these exposures to
flood variability greater than 1.25σ , 1.5σ , and 1.75σ between the two
warming levels (Figs. 9 and S6). Except for North America and Europe,
the whole and other FARs show positive avoided impacts of land area,
population, and GDP in the 1.5 °C warming compared to the 2 °C
warming. Similarly with flood magnitude, higher reduced impacts in
flood variability exceeding larger threshold are also observed in the
whole FARs and most of the individual FARs. However, the percentages
of reduced impacts for flood variability are precipitously larger than
those for flood magnitude. Over the whole FARs, the reduced impacts
for flood variability exceeding 1.75σ are estimated to be 27.1% ([+2.8,
+56.3]%) in land area, 34.7% ([+15.2, +72.6]%) in population and
12.0% ([−16.1, +40.5]%) in GDP in year 2000. The regions where the
reduced impacts are larger than those in the whole FARs, are mainly
found in Asia (i.e. Northeast Asia, East Asia, South Asia, and Central
and West Asia). As the above mentions, our model framework does not
incorporate the impacts of human interventions on the flood exposures
to flood magnitude and variability; hence, these population and GDP
exposures may be overestimated globally.

4. Conclusion and discussion

Our results signify that extreme floods are more sensitive to an-
thropogenic warming and their exposures could be markedly alleviated
by 0.5 °C less warming. Likewise, larger reduced impacts are projected
in greater flood variability whose exposures should be paid more at-
tention due to the consistent increases in all individual FARs. If tem-
perature increases from 1.5 °C to 2 °C, East and South Asia would suffer
the most serious increases in the exposures. Given China and India, the
two major countries in the two regions, having more than 2.7 billion of
population and producing 14.9 trillion GDP in US dollars per year, their
fast growth in population and GDP would largely amplify the socio-
economic exposures to extreme floods and even alter the response be-
havior of exposures to warming for the whole FARs. The potentially
huge economic damages caused by extreme floods in East and South
Asia would strongly and indirectly affect the society and economy in
North America and Europe by global trade network (Willner et al.,
2018).

Our results heavily depend on the ability of ISIMIP to reproduce
observed floods. Although the impacts of large uncertainties and biases
are minimized by the ensemble of different GCMs and GHMs and using
relative changes, there might be still noticeable deviations in some
regions. These deviations are mainly derived from GCMs and GHMs
uncertainty, scenario uncertainty, and internal variability (Giuntoli
et al., 2018). Although the GCMs outputs have been bias corrected
before they are taken as the inputs of the GHMs, this bias correction
may alter the climate change signal and introduce new uncertainty
(Pierce et al., 2015). Dankers et al. (2014) quantified the areas where
the GCMs/GHMs variance predominates the uncertainty of simulated
floods in ISIMIP, and they found that the uncertainty is mainly caused
by GCMs in tropic areas and outside the tropics the uncertainty induced

X. Gu, et al. Journal of Hydrology 590 (2020) 125262

9



by GHMs is much larger than GCMs. Li et al. (2016a,b) also pointed out
that the uncertainty of simulated floods over China from GCMs pre-
dominates. Giuntoli et al. (2018) further evaluated the uncertainties of
projected runoff over the conterminous United States in ISIMIP, and
indicated that the largest fraction of uncertainty is from GCMs and
GHMs, followed by internal variability and to a smaller extent RCPs.

We noticed that the 30-year flood peaks are relatively short records
which are used to estimate the 10-, 20- and 50-year floods. Schulz and
Bernhardt (2016) showed that estimating n-year floods require much
longer time series of flood peaks. They employed a 30-year moving
window from a particular long 186-year record of flood peaks to test the
uncertainty of estimated 100-year floods, and indicated that the 100-
year floods showed drastic fluctuations. It is difficult to accurately es-
timate the 100-year floods even using a 120-year or 300-year window
of flood peaks (Schulz and Bernhardt, 2016). Additionally, long-term
flood peaks are rarely available. Nevertheless, a 30-year window of
flood peaks is widely used to estimate n-year floods when assessing the
impacts of climate change on floods (Milly et al., 2002; Hirabayashi
et al., 2013; Dankers et al., 2014; Li et al., 2016a,b; Best, 2018; Paltan
et al., 2018). In these previous studies, a baseline period (e.g.

1971–2000) represents the current condition, and a projection period
represents a future condition (i.e. 2071–2100). The stationary GEV
distribution is used to estimate a given return period based on the
baseline period and projection period, although it is likely for the si-
mulated flood peaks to have a significant trend. There are several
reasons why the non-stationary GEV distribution was not chose by these
previous studies. First, the stationary flood peaks are “free of trends,
shifts, or periodicity (cyclicity)” (Salas, 1993). Even if the 30-year flood
peaks detected out trends and/or shifts, we can still not decide whether
it is stationary or not, due to that these trends and/or shifts may be the
normal fluctuations in a longer period (Koutsoyiannis, 2006). Second,
that whether the non-stationary model is better than the stationary
model is debatable among the hydrologist (Milly et al., 2008;
Montanari and Koutsoyiannis, 2014; Luke et al., 2017). Milly et al.
(2008) believe that stationarity is dead, while Montanari and
Koutsoyiannis (2014) stand by that stationarity is immortal. Luke et al.
(2017) tested 1250 annual maximum discharge records in the United
States and indicated that evidence supports an updated stationarity
thesis. Third, the n-year floods estimated by the nonstationary model
are time-varying and contain a larger uncertainty that that estimated by

Fig. 8. Areal exposures to flood variability at different warming levels with standard deviation () exceeding the 1.25σ , 1.5σ , and 1.75σ in present day over the whole
and individual FARs. The solid lines and corresponding shades indicate the multimodel ensemble medians and 25–75% ranges, respectively.

Table 2
Changes in areal, population, and GDP exposures to flood variability per warming 1°C. The percentages in grey columns indicate the ratios of area, population, and
GDP between East Asia/South Asia and the whole FARs, respectively.

Scenarios The whole FARs (%/°C) East Asia (%/°C) South Asia (%/°C)

1.25σ 1.5σ 1.75σ Percentages (%) 1.25σ 1.5σ 1.75σ Percentages (%) 1.25σ 1.5σ 1.75σ

Area 6.6 6.0 3.5 9.9 11.9 8.3 4.4 12.5 17.3 12.9 8.9
POP2000 9.4 7.5 5.0 25.8 11.2 8.1 4.6 31.1 17.0 13.9 10.4
SSP3 9.3 8.3 6.0 10.1 11.5 8.6 5.0 36.7 17.2 13.8 10.6
SSP4 7.6 7.1 5.6 7.9 12.0 9.1 5.4 26.8 17.1 13.6 10.3
SSP5 8.0 7.4 4.9 11.6 11.9 9.0 5.4 28.7 17.2 13.7 10.4
GDP2000 1.6 1.8 0.9 6.2 12.7 8.4 5.1 3.6 15.6 12.8 9.3
GDP2025 7.2 5.3 2.1 18.5 20.1 14.9 4.1 5.9 14.6 11.4 8.0

Note: the bold numbers are used to illustrate our results shown in the main text.
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the stationary model, given that the non-stationary model is more
complex (Luke et al., 2017). As the same with the previous studies, we
also chose the stationary GEV model to estimate the n-year floods based
on a 30-year window of flood peaks during 1971–2100.

Another major limitation of this study is that changes in vegetation
due to changing climate and hydrologic conditions are not taken into
consideration in the GHMs. Variations in vegetation distribution also
have considerable impacts on streamflow, especially for the flood
generating processes (Liu et al., 2017; Liu et al., 2018a,b; Zhang et al.,
2011). However, the magnitude and direction of these impacts on
streamflow are largely disputed among previous studies, due to that the
interactions and feedbacks between vegetation dynamics and hydro-
logical variables (e.g. precipitation, air temperature, and evapo-
transpiration) are not fully understood and explained (e.g. Gedney
et al., 2006; Piao et al., 2007). Gedney et al. (2006) attributed the in-
crease in global river runoff to the stomatal ‘‘antitranspirant’’ response
of plants under an elevated atmospheric CO2, while Piao et al. (2007)
denied this conclusion and owned the global runoff increase to the
changes in mean climate and its variability. To further solve this con-
flict, many studies deeply explored the response of precipitation, air
temperature, and evapotranspiration to vegetation dynamics under the
rising atmospheric CO2 (Ukkola et al., 2015; Skinner et al., 2017;
Lemordant et al., 2018; Li et al., 2018a,b; Yang et al., 2018; Fowler
et al., 2019; Lemordant and Gentine, 2019). Model simulations show
that vegetation physiological effects with rising CO2 globally enhance
the annual daily maximum temperature (Lemordant and Gentine,
2019). With rising CO2, the reduced stomatal conductance of vegetation
from projected physiological forcing leads to a decrease in evapo-
transpiration (Skinner et al., 2017), while the greening vegetation en-
hances the evapotranspiration by the increased transpiration (Li et al.,
2018a,b). The altered evapotranspiration induced by vegetation dy-
namics further affects the precipitation change and the strength of this

effect varies by regions (Skinner et al., 2017; Li et al., 2018a,b). For
example, Li et al., 2018a,b indicated that greening vegetation-induced
precipitation increase can largely offset the enhanced evapotranspira-
tion in North and Southeast China. The changes in streamflow caused
by vegetation dynamics is the result of the co-effects from precipitation,
evapotranspiration, and soil water storage. Therefore, from a global
perspective, it doesn’t reach an agreement on the change direction of
vegetation dynamic-induced streamflow (Ukkola et al., 2015; Yang
et al., 2018; Fowler et al., 2019). Fowler et al. (2019) indicated that
plant physiological effects driven by the effects of CO2 will boost
streamflow, while Ukkola et al. (2015) suggested the CO2 effects on
vegetation leads to a decline in streamflow in water-stressed climates.
For our study, whether our flood simulations without considering the
vegetation dynamics are overestimated or underestimated remains
poorly understood, due to the discrepancies of the effects vegetation
dynamics on streamflow.

Considering the complexity of global river networks, topography,
land use and land cover, the flood exposures are not calculated by using
flood inundation models and damage curves (Dottori et al., 2018). The
directly overlaying population and GDP data on the exposed grids could
overestimate the flood exposures. Furthermore, we calculate the flood
exposures without considering the installed and maintained flood pro-
tection standards, which may overestimate the exposures in some re-
gions, such as China (Winsemius et al., 2016). However, our purpose is
not to accurately evaluate the values of flood exposures under future
warming, but to assess the relative changes in flood exposures. This way
to assess the impacts of flooding on population and GDP has been
widely used in previous studies (Jongman et al., 2012; Hirabayashi
et al., 2013; Asadieh and Krakauer, 2017). Another limitation of our
study is to use a short period (i.e. 30 years) to estimate 50-year floods.
The estimation uncertainty of 50-year floods will be amplified by using
values in the short period, which will make the results less solid (Schulz

Fig. 9. Areal, population and GDP exposures reduced in the 1.5 °C warming relative to the 2 °C warming for flood variability with standard deviation that exceeds the
1.25σ , 1.5σ , and 1.75σ in the present day. The circles and lines denote multimodel medians and 25–75% ranges, respectively. Solid (open) circles denote the signs of
medians are (not) agreed by more than 60% of models.

X. Gu, et al. Journal of Hydrology 590 (2020) 125262

11



and Bernhardt, 2016). Nevertheless, previous studies still used the va-
lues over a short period to estimate rate floods, such as 100-year floods
(e.g. Jongman et al., 2012; Hirabayashi et al., 2013). It is a huge
challenge to solve the issue that how to accurately estimate the recur-
rence of rate floods over the current relatively short period.
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